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ABSTRACT

Electrolytic capacitors are used in several applications rang-
ing from power supplies for safety critical avionics equipment
to power drivers for electro-mechanical actuators. Past expe-
riences show that capacitors tend to degrade and fail faster
when subjected to high electrical or thermal stress condi-
tions during operations. This makes them good candidates for
prognostics and health management. Model-based prognos-
tics captures system knowledge in the form of physics-based
models of components in order to obtain accurate predictions
of end of life based on their current state of health and their
anticipated future use and operational conditions. The focus
of this paper is on deriving first principles degradation mod-
els for thermal stress conditions and implementing Bayesian
framework for making remaining useful life predictions. Data
collected from simultaneous experiments are used to validate
the models. Our overall goal is to derive accurate models of
capacitor degradation, and use them to remaining useful life
in DC-DC converters.

1. INTRODUCTION

Avionics systems play a critical role in many aspects of air-
craft flight control. As the system complexity and flight crit-
icality of functions performed by these systems increases,
the related consequences of in-flight malfunctions are bound
to increase. This drives the need for Integrated Vehicle
Health Management (IVHM) technologies for flight-critical
avionics. Studying and analyzing the performance degrada-
tion of embedded electronics in the aircraft domain is abso-
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lutely necessary to increase aircraft reliability, assure in-flight
performance, and reduce maintenance costs, (J. R. Celaya,
Wysocki, Vashchenko, Saha, & Goebel, 2010; Ferrell, 1999).
In addition to this, an understanding of the behavior of de-
teriorated components is needed as well as the capability to
anticipate failures and predict the remaining useful life (RUL)
of the electronic systems.

An avionics system module consists of hardware (power sup-
ply, Global positioning system (GPS) receiver, Intertial mea-
surement unit (IMU)) and software (GPS software, INAV - in-
tegrated navigation solution) components (Kulkarni, Biswas,
Bharadwaj, & Kim, 2010). Switched-mode power supplies
are widely used in DC-DC converters because of their high
efficiency and compact size. Buck-boost DC-DC converter
steps voltage levels up/down based on the application re-
quirements, in which electrolytic capacitors and metal ox-
ide semiconductor field effect transistor (MOSFET) switches
are known to have the highest degradation and failure rates
among all of the components (Goodman, 2005). Degraded
capacitors affect the performance and efficiency of the DC-
DC converters in a significant manner and also impose a risk
on instantiating cascading failures on other connected subsys-
tems.

In this paper we develop an effective prognostics and health
management (PHM) methodology that applies to electronic
systems and components. In particular, we develop a method-
ology to enable early detection of failure precursors in capaci-
tor elements associated with DC-DC power supplies. Our ap-
proach combines physics-based modeling supported by em-
pirical experimental analysis for improving the degradation
models, and then implementing bayseain framework to pre-
dict remaining useful life of electrolytic capacitors. Our hy-
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pothesis is that early detection will lead to better prediction
and end of life estimates by tracking and modeling the degra-
dation process.

The structure of the paper is as follows. Section II dis-
cusses the prognostics metholdology implemented for this
work. Section III presents introduction to electrolytic capaci-
tors and its basic structure, operation and degradation mech-
anisms. Section IV discusses capacitor first principle models
in detail. Section V describes the thermal stress aging exper-
iments conducted for this work. Section VI and VII presents
the prognostic framework methodology and RUL results re-
spectively. The paper ends with discussion and conclusion in
section VIII.

2. PROGNOSTIC METHODOLOGY

Prognostics is the process of predicting health condition and
remaining useful life based on current and previous state, cur-
rent and future operating conditions. Prognostics and health
management (PHM) methods combine sensing, data collec-
tion, interpretation of environmental, operational, and perfor-
mance related parameters to indicate systems health as well
as anticipate damage propagation due to degradation. PHM
methodologies can be implemented through the use of var-
ious techniques that study parameter variations, which indi-
cate changes in performance degradation based on usage du-
ration and conditions.

Prognostics is an essential technology for improving system
safety, reliability, and availability. Prognostics deals with de-
termining the health state of components, and projecting its
health evolution into the future to make end of life (EOL)
and remaining useful life (RUL) estimations. Model-based
prognostics approaches perform these tasks with the help of
first principles based physics models that capture knowledge
about the system, its components, and their failures (Daigle
& Goebel, 2011; Saha & Goebel, 2009).

We adopt an approach wherein we develop detailed physics-
based models of components and systems that include de-
scriptions of how fault parameters evolve in time. The im-
plemented prognostics architecture is as shown in Figure 1.
We have implemented this approach on empirical degradation
models in our earlier work (J. Celaya et al., 2011a; Kulka-
rni et al., 2012). Experimental studies are being conducted
and first principles based degradation models are being de-
rived using the descriptions mentioned in (Kulkarni, Celaya,
et al., 2011; J. Celaya et al., 2011a; Fife, 2006; MIL-C-62F,
2008). Identifying the failure precursors and developing ac-
curate models of degradation/ failure has been the most diffi-
cult problem of our research goal. These models depend on
known as well as unknown and possibly time-varying wear
parameters. Early detection and analysis may lead to better
prediction and end of life estimates of the capacitor by track-
ing and modeling the degradation process. Faults and degra-

dations appear as parameter value changes in the model, and
this provides the mechanisms for tracking system behavior
under degraded conditions (J. Celaya et al., 2011a, 2011b).
The derived state space models are then implemented in a
Bayesian framework for prognostics.

Electrolytic Capacitor

Accelerated Aging 

Experiments

Degradation in parameters

Degradation Modeling

Parameter estimation

Prediction

Thermal / Electrical Stress

Experimental Data

State Space model

RUL EOL Prognostics

Figure 1. Prognostics Methodology

In the next section we discuss in brief the basics of elec-
trolytic capacitors, their detailed structure and different
mechanisms under which the devices degrade.

3. ELECTROLYTIC CAPACITORS

An aluminum electrolytic capacitor, as illustrated in Figure 2,
consists of a cathode aluminum foil, electrolytic paper, elec-
trolyte, and an aluminum oxide layer on the anode foil sur-
face, which acts as the dielectric. When in contact with the
electrolyte, the oxide layer possesses an excellent forward di-
rection insulation property (Bengt, 1995). Figure 3 shows a

Anode Foil

Cathode Foil

Connecting Lead 

Aluminum Tab

Separator Paper

Figure 2. Illustration of an Electrolytic Capacitor
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detailed view of the cross section of an electrolytic capacitor
structure. To get higher capacitance values for the same sur-
face area of the anode and cathode foils, the foil is etched by a
chemical process. Together with magnified effective surface
area attained by etching the foil, a high capacitance value is
obtained in a small volume (Fife, 2006). Since the oxide
layer has rectifying properties, a capacitor has polarity. If
both the anode and cathode foils have an oxide layer, the ca-
pacitors would be bipolar. In this work, we analyze non-solid
aluminum electrolytic capacitors in which the electrolytic pa-
per is impregnated with liquid electrolyte. After etching, the
plates are anodized by coating them with a thin aluminum ox-
ide layer on the surface of the foil. This layer of aluminum
oxide acts as the dielectric (insulator) and serves to block the
flow of direct current between the two capacitor plates (Fife,
2006).

highly etched 

aluminum foil

anode

dielectric Layer

Al2O3 – 

electrochemical 

oxide 

layer(forming)

electrolyte paper 

(spacer)
Al2O3 – oxide 

layer(natural)

etched aluminum 

foil

electrolyte

T
e

x
t

cathode

Text
leakage current

Figure 3. Capacitor Detail Structure

Electrolytic capacitor performance is strongly affected by its
operating conditions, such as voltage, current, frequency, and
ambient temperatures. Degradation in the capacitor manifests
an increase in the equivalent series resistance (ESR) and de-
crease in capacitance (C), due to deterioration of electrolyte
quality, decreases in electrolyte volume due to evaporation,
weakening of the oxide layer, over operating time (Bengt,
1995; Fife, 2006). The ESR of a capacitor is the sum of
the resistance due to aluminum oxide, electrolyte, spacer, and
electrodes (foil, tabbing, leads, and ohmic contacts) (Bengt,
1995) and capacitance is the ability of a capacitor to store
charge in an electric field. The health of a capacitor is often
measured by the values of these two parameters.

There are certain industry standard thresholds for these pa-
rameter values, if the measurements exceed these thresholds
then the component is considered unhealthy, i.e., the compo-
nent has reached its end of life, and should be immediately
replaced before further operations (Lahyani, Venet, Grellet,
& Viverge, 1998). Failures in a capacitor can be one of two
types: (1) catastrophic failures, where there is complete loss

of functionality due to a short or open circuit, and (2) degrada-
tion failures, where there is gradual deterioration of capacitor
due to accumulated damages.

The fishbone diagram in Figure 6 summarizes the most com-
mon set of failure modes for electrolytic capacitors that have
been discussed in (J. Celaya et al., 2011a; Kulkarni et al.,
2012). This diagram identifies the relationship between root
causes and failure modes observed in electrolytic capacitors.
These root causes can occur individually or combined man-
ner in a capacitor depending upon the conditions of operation.
Our focus in this work is on the thermal stressors that govern
the capacitor degradation, specifically, we study high temper-
ature scenarios and their effects on the electrolytic capacitor
degradation.

3.1. Equivalent Electrical Circuits

A simplified electrical lumped parameter model of
impedance, M1, defined for an electrolytic capacitor is
shown in Figure 4. The ESR dissipates some of the stored
energy in the capacitor. An ideal capacitor would offer no
resistance to the flow of current at its leads.

C1
R1

ESR

C

1mΩ

R3 ≥ 10K   R4 ≥ 10K   

R2RE C2
Anode foil 

electrode 

resistance

Cathode foil 

electrode 

resistance

Electrolyte 

resistance

R1

2 mΩ

R2   

RE

1mΩ

C1
R1

2 mΩ

RE

Coxide_layer

C1

Figure 4. Lumped Parameter Model (M1 )

It has been observed that under thermal overstress storage
conditions (Bengt, 1995; J. Celaya et al., 2011a), the capac-
itance (C) and ESR value depends of the electrolyte resis-
tance RE . A more detailed lumped parameter model derived
for an electrolytic capacitor under thermal overstress condi-
tion,M2 can be modified fromM1, as shown in Figure 5. R1

is the combined series and parallel resistances in the model.
RE is the electrolyte resistance. The combined resistance of
R1 and RE is the ESR of the capacitor. C is the total capac-
itance of the capacitor as discussed earlier.

R1 RE C

ESR

Figure 5. Lumped Parameter Model (M2 )

4. PHYSICS BASED MODELING

In this section we discuss about deriving the first principles
based degradation models for capacitors under thermal over-
stress conditions. Under thermal overstress conditions since
the device was subjected to only high temperature with no
charge applied we observe degradation only due to electrolyte
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Decrease in capacitance
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Figure 6. Fishbone diagram of failure mechanisms in aluminum electrolytic capacitor

evaporation. The degradation models are derived based on
the underlying physics of operation and measurements from
experimental data.

4.1. Structural Model

For deriving the physics based models of an electrolytic
capacitor it is also necessary to know about the structural
and manufacturing details, since health estimations are done
based on the type of electrolyte, volume of electrolyte, oxide
layer thickness etc. The models defined use this information
for making effective degradation/failure predictions. A de-
tail structural study of the electrolytic capacitor under test is
discussed in this section.

During modeling it is not possible to know the exact amount
of electrolyte present in a capacitor. But using information
from the structural details as shown in Figure 7, we can ap-
proximately calculate the amount of electrolyte present. A
very highly porous separator paper is used which soaks all
the electrolyte. The paper separator is sandwiched between
anode and cathode, each having a thickness dS , dA and dC
respectively (dS ≈ dA ≈ dC). Based on the type and configu-
ration, the electrolyte volume will vary which can be updated
in the model parameters.

The equation for calculating the approximate electrolyte vol-
ume is derived from calculating the total capacitor capsule
volume, Vc given by :

Vc = πr2chc (1)

where :
rc = radius of capacitor capsule
hc = height of capacitor capsule

s

A sC

c
c

Figure 7. Capacitor open structure

The approximate electrolyte volume, Ve based on all the other
known structural details of the capacitor can expressed as:

Ve = πr2chc −As(dA + dC) (2)

4.2. Capacitance Degradation Model

Exposure to high temperatures, Tapplied > Trated results in
accelerated aging of capacitors (Kulkarni, Celaya, et al.,
2011; J. Celaya et al., 2011a; 60068-1, 1988). Higher
ambient storage temperature accelerates the rate of elec-
trolyte evaporation leading to degradation of the capaci-
tance (Kulkarni, Celaya, et al., 2011; Bengt, 1995). The de-
pletion in electrolyte volume, Ve, (Kulkarni, Biswas, et al.,
2011; Rusdi et al., 2005) is given by :

Ve(t) = Vo − (As jeo we)× t (3)

where:
Vo = initial electrolyte volume
jeo = evaporation rate (mg min−1 area−1)
we = volume of ethyl glycol molecule
t = time in hours.

The total lumped capacitance from first principles of electro-
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magnetism is given by :

C = (2εRε0As)/dC (4)

where:
εR = relative dielectric constant
εO = permitivity of free space

Thus from Eq. (3) and Eq. (4) we can derive the first princi-
ples capacitance degradation model,M3 given by :

M3 : C(t) =

(
2εRε0
dC

)(
V0 − Ve(t)
jeo t we

)
(5)

As discussed earlier, increase in the core temperature evapo-
rates the electrolyte thus decreasing the electrolyte volume
leading to degradation in capacitance. The resultant de-
crease in the capacitance can be computed using model,M3

wherein the decrease in electrolyte volume, (Ve) leads to de-
crease in capacitance, (C).

4.3. Dynamic Models

The electrolyte volume.Ve can also be calculated and can also
be expressed as Ve = As.dC . Hence the oxide surface area,
As can be expressed in terms of electrolyte volume, Ve and
oxide thickness, dC as:

As =
Ve
dC

. (6)

From Eq. (4) and Eq. (6), dynamic capacitor degradation
model can be updated as :

Ck =

(
2εRε0
dC

)(
Ve(k)

dC

)
(7)

From Eq. (3) the first order discrete approximation for change
in electrolyte volume can be expressed as:

dVe
dt

= −(weAsjeo),

Ve(k+1) = Ve(k) +
dVe
dt

∆t,

Ve(k+1) = Ve(k) − (weAsjeo)∆t.

(8)

From Eq. (7) we have,

Ve(k) =
Ck

2εRε0
d2C ,

Ve(k) = (Ck)α.
(9)

where:

α =
d2C

2εRε0

From Eq. (9) we can express Eq. (8) as :

Ck+1α = Ckα+
dC

dt
∆t,

Ck+1α = Ckα− (weAsjeo)∆t, hence

Ck+1 = Ck −
(weAsjeo)

α
∆t.

(10)

The complete discrete time dynamic model for capacitance
degradation can be summarized as :

M4 : Ck+1 = Ck −
(2εRε0weAsjeo)

d2C
∆t (11)

ModelM4, in Eq. (11) is implemented in a Bayesian track-
ing framework. In this work we are implementing a un-
scented Kalman filter (UKF) since the degradation in capac-
itance (state) due to decrease in electrolyte is considered to
be a dynamic linear model and the evaporation rate (jeo) pa-
rameter, assumed to be varying and estimated online. Next
we discuss the implementation of the Bayesian framework
methodology for prognostics (Saha & Goebel, 2009; Daigle
et al., 2012; Daigle & Goebel, 2011).

5. UNSCENTED KALMAN FILTER

Estimation in nonlinear system is very important because
many practical systems involve nonlinearities in their oper-
ation through one form or another. Estimation of the state
accurately of such non-linear system is very important to di-
agnostics and be further implemented to prognostic appli-
cations which is extremely difficult. The Extended Kalman
Filter (EKF) which applies the KF to nonlinear system by
linearizing all nonlinear models, has become a most widely
used method for estimation of nonlinear system. Although
the EKF maintains is computationally efficient recursive up-
date form of the KF for non-linear systems, it suffers a num-
ber of serious limitations (Julier & Uhlmann, 1997, 2004).

1. Only reliable if the error propagation to the future states
can be approximated by a linear function.

2. Linearization can be applied only if the Jacobian matrix
exists i.e, cannot be implemented if the system has dis-
continuities.

3. Calculating Jacobian matrices can be a very difficult and
error-prone process.

The Unscented Kalman Filter (UKF) was proposed by (Julier
& Uhlmann, 1997, 2004) to overcome these problems in non-
linear systems. The unscented Kalman filter, instead of ap-
proximating the nonlinearity, approximates the state distribu-
tion (Julier & Uhlmann, 1997, 2004). This procedure main-
tains the nonlinear functions exactly, eliminating the need to
calculate Jacobian’s, and thereby providing an easier imple-
mentation framework. In this section we will look in the

5
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detail framework of UKF which has been implemented for
prognostics in this work.

A nonlinear system, described by the difference equation and
the observation model with additive noise is given as :

xk = F[xk−1, uk−1, k] + wk−1

zk = H[xk, k] + vk
(12)

where x(k) is the n-dimensional state of the system at time
step k, u(k) is the input vector, w(k) is the process noise,
Q, z(k) is the observation vector and vk is the measurement
noise, R.

To solve the problem of predicting the future state or obser-
vation based on the Unscented transform (UT), UT takes a
random variable x , with mean x̄ and covariance Pxx, which
is related to a second random variable y by a nonlinear func-
tion y = f(x). A small set of points (sigma points) with
mean ȳ and covariance Pxx are selected (Julier & Uhlmann,
1997), which are deterministically selected and weighted to
exhibit properties to match the mean and covarinace of the
original distribution. A non-linear transformation is applied
to each point to get the transformed points, statistics of the
transformed points is then calculated to estimate the mean
and covariance of the transformed points. The sigma point
weights do not directly represent probabilities of the sigma
points, and hence do not have to lie in the interval [0, 1]. The
weights Wi can be positive or negative, but need to obey the
following conditon to provide an unbiased estiamte.∑

i

Wi = 1 (13)

Each sigma point is instantiated through the function(f ) to
obtain new set of sigma points Y .

Yi = f(Xi) (14)

The mean of the transformed points is given by:

ȳ =
∑
i

WiYi (15)

The covariance of the transformed points is given by:

Pyy =
∑
i

Wi(xo − µ0)(x0 − µ0)T (16)

The basic idea of the unscented transform is that it is eas-
ier to apporximate a probability distribution x than it is to
approximate an arbitary nonlinear function f or transforma-
tion (Julier & Uhlmann, 2004). This basic principle is imple-
mented in the unscented Kalman filter where the unscented
transform is exploited for nonlinear state estimation (Julier &

Uhlmann, 1997, 2004). At each step, the unscented trans-
form is applied to the state estimate and is used for a single
step prediction. In contrast, here, we apply the transform to
the state parameter distribution at given single time point kP
, and use this for multi-step predictions to EOL. There are
several methods which exits for selecting the sigma points
out of which we implement the symmetric unscented trans-
form for the prognosis problem (Daigle et al., 2012; Julier &
Uhlmann, 2004). Detailed results will be presented in Section
6 for capacitor degradation problem.

In the symmetric unscented transform, 2nx + 1 sigma points
are selected symmetrically about the mean as follows (Julier
& Uhlmann, 2004):

X0 = x̄

W0 =
k

n+ k

Xi = x̄+
√

((n+ k)Pxx)i,

Wi =
k

2(n+ k)

Xi+n = x̄−
√

((n+ k)Pxx)i

Wi+n =
k

2(n+ k)

(17)

where
√

((n+ k)Pxx)i refers to the ith column of the ma-
trix square root of (n+ k)Pxx, computed using the Cholesky
decomposition since it is numerically efficient and stable. Pa-
rameter k is used to tune the higher moments of distribution
and suggested to have a smaller values as possible to bring the
sigma points closer together. If x is assumed Gaussian, then
selecting n + k = 3 is recommended (Julier and Uhlmann,
1997).

6. THERMAL OVERSTRESS EXPERIMENT

In this setup we emulated conditions similar to high tempera-
ture storage conditions (Kulkarni, Celaya, et al., 2011; Kulka-
rni, Biswas, et al., 2011), where capacitors were placed in
a controlled chamber and the temperature raised above their
rated specification (60068-1, 1988). Pristine capacitors were
taken from the same lot rated for 10V and maximum storage
temperature rating of 85◦C.

Experiments were conducted with 2200 µF capacitors with
TOS temperature at 105◦C and humidity factor at 3.4%.
The chamber temperature was gradually increased in steps of
25◦C till the pre-determined temperature limit was reached.
The capacitors were allowed to settle at a set temperature for
15 min and then the next step increase was applied. This
process was continued till the required temperature limit was
attained. To decrease possibility of shocks due to sudden de-

6



Annual Conference of the Prognostics and Health Management Society 2012

crease in the temperature the above procedure was followed.
At the end of specific time interval the temperature was low-
ered in steps of 25◦C till the required room temperature was
reached.

Before being characterized the capacitors were kept at room
temperature for 15 min. The ESR value is the real impedance
measured through the terminal software of the instrument.
Similarly the capacitance value is computed from the imag-
inary impedance using Electrochemical Impedance Spec-
troscopy (EIS). Characterization of all the capacitors was
done for measuring the impedance values using an SP-
150 Biologic impedance measurement instrument (Biologic,
2010). Figure 8 shows the plots decrease in capacitance due
to accelerated aging for all the 15 capacitors under test at dif-
ferent aging times.
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Figure 8. Capacitance Plot for all the devices under TOS

In the thermal overstress experiments, the capacitors we char-
acterized periodically and after 3400 hours of operation it was
observed that the average capacitance (C) value decreased by
more than 9-11% while decrease in ESR value was observed
around 20 - 22%. From literature (60068-1, 1988) under ther-
mal overstress conditons higher capaitance degradation is ob-
served and minor degradation in ESR which correlated with
the data collected. The failure thresholds under storage condi-
tions for capacitance (C) is 10% while that forESR is around
280- 300% of the pristene condition values (60384-4-1, 2007;
Kulkarni, Celaya, et al., 2011). Hence the capacitance degra-
dation data was used as a precursor to failure parameter to
estimate the current health condition of the device.

7. PREDICTION OF REMAINING USEFUL LIFE RESULTS

State estimation and RUL estimation results are discussed for
capacitor Cap # 5 out of a batch of 15 available capacitors
under test. Figure 9 shows the result of filter tracking for
degradation in capacitance upto 3200 hours of aging time.
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Figure 9. (a) Tracking filter output against measurement data,
(b) Output error for Cap # 5

Figure 10 presents results from the remaining useful life pre-
diction algorithm at different aging times tp = 87, 607,
1495, 2131, 2800 (hrs), at which the capacitors are charac-
terized and their capacitance (C) value is calculated. The
failure threshold is considered to be 10% decrease in ca-
pacitance value, which in this case is at 3200 hours of ag-
ing time. End of life (EOL) is defined as the time at which
the forecasted capacitance value trajectory crosses the EOL
threshold. Therefore, RUL is EOL minus aging times tp =
87.5, 607, 1495, 2131, 2800 (hrs).
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Figure 10. Capacitance decrease prediction at different Aging
Time for Cap # 5
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An α-λ prognostics performance metric (Saxena et al., 2009,
2008) is presented in Figure 11 for test case of Cap #5. The
central dashed line represents ground truth and the shaded
region is corresponding to a 30% (α = 0.3) error bound in the
RUL prediction. Performance metric identifies whether the
algorithm performs within desired error margins (specified by
the parameter α) of the actual RUL at any given time instant
(specified by the parameter λ) (Saxena et al., 2009) and is
based on relative accuracy (RA) metric in Eq. (18).

RA = 100

(
1− RUL∗ −RUL′

RUL∗

)
(18)

Table 1 shows the performance summary based on the RA of
all the capacitors under thermal stress performance. These
metrics allows for an assessment of the percentage accuracy
relative to the ground-truth value. RA values of 100 represent
perfect accuracy. The RA is presented for all the test cases
for different prediction times. The last column of Table 1
represents the median RA of all the test cases for a particular
prediction time. It must be noted that if the prediction error
magnitude grows beyond 100% RA gives a negative value.
We do not consider such cases since these cases would not
have qualify the tests for calculating RA (Saxena et al., 2009),
these are indicated by NA in Table 1.

From the α-λ metric plot in Figure 11 it can be observed that
the relative accuracy is not as good at the end but the accuracy
is good enough under acceptable limits. This is due to the
non-linearity observed in the data at the end of the aging time
and the limitation of the model due to not including the oxide
layer breakdown. The residuals show an increased error with
aging time, since the breakdown in the oxide layer observed
due to stress is not considered for this model which starts
to dominate in the later stages of aging of the device. This
breakdown is exponential in nature and as we can observe a
dip in the capacitance values from the linear path in the later
stages.

8. CONCLUSION AND DISCUSSION

This paper presents a first principles based degradation elec-
trolytic capacitor model and an parameter estimation algo-
rithm to validate the derived model, based on the experimen-
tal data. The majors contributions of the work presented in
this paper are:

1. Development of the first principles degradation model
based on accelerated life test aging data which includes
decrease in capacitance as a function of time and evapo-
ration rate linked to temperature conditions;

2. Implementation of a Bayesian based health state track-
ing and remaining useful life prediction (RUL) algorithm
based on the UKF filtering framework;

3. Prediction of remaining useful life for capacitors based
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Figure 11. Performance based on Alpha-Lambda metric for
Cap#5

first principles degradation model,M3;

The degradation model, M3 based on the first principles
gives an indication of how a specific device degrades based
on its structure, material properties, operating conditions, etc.
The results presented here are based on accelerated aging ex-
perimental data and on the accelerated life timescale. In our
earlier work we studied the degradation models based on the
observed data, and the work discussed here is a next step to
generalize the model. Though as discussed in section 4, as a
first step a dynamic linear model has been implemented for
degradation model. This degradation model for decrease in
capacitance, C and varying evaporation rate jeo needs to be
updated and include the model of break-down in the oxide
layer which is exponential in nature and dominates in the
later stages of aging. Further research will focus on devel-
opment of functional mappings that will translate the acceler-
ated life timescale into real usage conditions timescale, where
the degradation process dynamics will be slower, and sub-
jected to varying stress conditions.

The performance of the proposed first principles degradation
model, M3 is acceptable for the current study based on the
quality of the model fit to the experimental data and the RUL
prediction performance from α-λ metric plot. Additional ex-
periments are currently underway to increase the number of
test samples. This will greatly enhance the quality of the
model, and guide the exploration of additional degradation-
models, where the loading conditions and the environmen-
tal conditions are also accounted for towards degradation dy-
namics.
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NOMENCLATURE

εR relative dielectric constant
εO permitivity of free space
Vo initial electrolyte volume
jeo evaporation rate (mg min−1 area−1)
ρE electrolyte resistivity
As effective oxide surface area
we volume of ethyl glycol molecule
dA thickness of anode strip,
dC thickness of cathode strip
ds thickness of paper spacer
M1 electrical lumped parameter model
M2 updated lumped parameter model
M3 capacitance degradation model
M4 capacitance discrete time model
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Aging Time C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 RAa

181.67 98.34 95.03 100.00 98.34 98.34 98.34 98.34 93.37 98.34 96.69 91.72 91.72 98.34 98.34 96.69 96.80
295.38 98.28 94.84 98.28 100.00 100.00 98.28 98.28 93.11 98.28 96.56 93.11 91.39 98.28 100.00 96.56 97.02
384.47 98.22 94.67 100.00 100.00 98.22 98.22 98.22 92.90 98.22 96.45 91.12 91.12 98.22 98.22 96.45 96.69
450.93 98.18 94.54 98.18 100.00 100.00 100.00 98.18 92.72 98.18 96.36 92.72 90.91 98.18 100.00 98.18 97.09
540.77 98.12 94.36 100.00 100.00 100.00 98.12 98.12 92.48 98.12 96.24 92.48 90.60 98.12 100.00 96.24 96.87
607.07 98.07 94.22 98.07 100.00 100.00 100.00 98.07 92.29 98.07 96.14 92.29 90.36 98.07 100.00 98.07 96.91
701.62 98.00 94.00 98.00 100.00 100.00 100.00 98.00 91.99 98.00 96.00 91.99 89.99 98.00 100.00 98.00 96.80
766.83 97.95 91.78 97.95 100.00 100.00 100.00 100.00 93.84 97.95 93.84 91.78 89.73 97.95 100.00 97.95 96.71
860.43 97.86 93.59 97.86 100.00 100.00 100.00 97.86 93.59 97.86 95.73 91.45 89.31 97.86 100.00 97.86 96.72
950.07 97.78 93.33 97.78 100.00 100.00 100.00 97.78 93.33 97.78 95.56 91.11 88.89 97.78 100.00 97.78 96.59
1019 100.00 90.83 97.71 100.00 100.00 100.00 100.00 93.12 97.71 93.12 93.12 88.54 95.41 100.00 97.71 96.48

1084.47 97.64 92.91 100.00 100.00 100.00 100.00 97.64 92.91 97.64 95.27 90.55 90.55 97.64 100.00 97.64 96.69
1179.5 97.53 92.58 100.00 100.00 100.00 100.00 97.53 92.58 97.53 95.05 90.10 90.10 97.53 100.00 97.53 96.54

1244.82 97.44 92.33 100.00 100.00 100.00 100.00 97.44 92.33 97.44 94.89 92.33 89.77 97.44 100.00 97.44 96.59
1338.18 97.31 91.94 100.00 100.00 100.00 100.00 97.31 94.63 97.31 94.63 91.94 89.26 97.31 100.00 97.31 96.60
1404.48 97.22 91.65 100.00 100.00 100.00 97.22 100.00 94.43 97.22 94.43 91.65 88.86 97.22 100.00 97.22 96.47
1495.4 97.07 91.20 100.00 100.00 100.00 97.07 97.07 94.13 97.07 94.13 91.20 88.27 97.07 100.00 97.07 96.09

1560.48 96.95 90.85 100.00 100.00 100.00 96.95 100.00 96.95 96.95 90.85 93.90 87.80 96.95 96.95 100.00 96.34
1626.53 96.82 93.64 96.82 100.00 100.00 96.82 96.82 96.82 100.00 93.64 90.47 90.47 96.82 100.00 96.82 96.40
1716.57 96.63 89.89 100.00 100.00 96.63 93.26 100.00 100.00 96.63 89.89 93.26 86.52 96.63 96.63 100.00 95.73
1807.02 96.41 89.23 96.41 100.00 100.00 92.82 100.00 100.00 96.41 92.82 96.41 89.23 96.41 96.41 100.00 96.17
1871.62 96.24 88.71 96.24 100.00 96.24 92.47 100.00 96.24 96.24 88.71 96.24 88.71 96.24 96.24 96.24 94.98
2036.88 91.40 91.40 91.40 100.00 100.00 91.40 95.70 95.70 100.00 91.40 95.70 91.40 100.00 95.70 100.00 95.41
2131.35 90.64 95.32 90.64 95.32 100.00 90.64 95.32 95.32 95.32 90.64 95.32 90.64 100.00 95.32 95.32 94.39
2196.1 90.04 95.02 90.04 100.00 100.00 90.04 95.02 90.04 95.02 90.04 100.00 95.02 100.00 95.02 95.02 94.69

2290.12 83.51 94.50 83.51 94.50 100.00 89.01 94.50 83.51 94.50 89.01 100.00 94.50 100.00 94.50 94.50 92.67
2355.97 82.23 94.08 82.23 94.08 100.00 82.23 94.08 82.23 94.08 88.15 100.00 100.00 100.00 94.08 88.15 91.71
2421.92 80.72 100.00 80.72 100.00 93.57 74.30 100.00 74.30 93.57 87.15 93.57 100.00 100.00 87.15 87.15 90.15

2500 71.43 100.00 71.43 92.86 100.00 71.43 92.86 64.29 85.71 85.71 92.86 92.86 92.86 85.71 85.71 85.71
2650 54.55 90.91 54.55 90.91 100.00 63.64 90.91 54.55 72.73 90.91 81.82 81.82 90.91 81.82 72.73 78.18
2800 37.50 75.00 37.50 75.00 100.00 37.50 87.50 25.00 62.50 87.50 75.00 62.50 75.00 75.00 62.50 65.00
3000 NA 25.00 NA 50.00 100.00 0.00 75.00 NA 0.00 75.00 25.00 NA 50.00 50.00 25.00 43.18

RAb 87.13 90.78 87.99 96.60 99.39 89.29 94.45 85.73 92.14 92.50 90.32 87.15 95.49 94.97 92.38

Table 1. Summary of RUL forecasting results
RAa is the mean relative accuracy of all capacitors at each prediction time (tp)
RAb is the mean relative accuracy of each capacitor at all prediciton times

11


